A polynomial homotopy is a family of polynomial systems, where the systems in the family depend on one parameter. If for one value of the parameter we know a regular solution, then what is the nearest value of the parameter for which the solution in the polynomial homotopy is singular? For this problem we apply the ratio theorem of Fabry. Richardson extrapolation is effective to accelerate the convergence of the ratios of the coefficients of the series expansions of the solution paths defined by the homotopy. For numerical stability, we recondition the homotopy. To compute the coefficients of the series we propose the quaternion Fourier transform. We locate the closest singularity computing at a regular solution, avoiding numerical difficulties near a singularity.
翻译:多元同族体是多式体系的大家庭, 家庭中的系统依赖于一个参数。 如果对于一个参数的某个值我们知道一个常规解决方案, 那么多式同族体中解决方案是单数的参数的最接近值是什么? 对于这个问题, 我们应用Fabry 的比方理论。 Richardson 外推法对于加速同族体定义的解决方案路径的系列扩展系数比的趋同有效。 对于数字稳定性, 我们重新修补同质体。 要计算序列中的系数, 我们建议四维变换四维体。 我们把最接近的单点计算放在一个常规解决方案上, 避免数字困难接近单一性 。