Factor models are widely used for dimension reduction in the analysis of multivariate data. This is achieved through decomposition of a p x p covariance matrix into the sum of two components. Through a latent factor representation, they can be interpreted as a diagonal matrix of idiosyncratic variances and a shared variation matrix, that is, the product of a p x k factor loadings matrix and its transpose. If k << p, this defines a sparse factorization of the covariance matrix. Historically, little attention has been paid to incorporating prior information in Bayesian analyses using factor models where, at best, the prior for the factor loadings is order invariant. In this work, a class of structured priors is developed that can encode ideas of dependence structure about the shared variation matrix. The construction allows data-informed shrinkage towards sensible parametric structures while also facilitating inference over the number of factors. Using an unconstrained reparameterization of stationary vector autoregressions, the methodology is extended to stationary dynamic factor models. For computational inference, parameter-expanded Markov chain Monte Carlo samplers are proposed, including an efficient adaptive Gibbs sampler. Two substantive applications showcase the scope of the methodology and its inferential benefits.
翻译:在分析多变量数据时广泛使用因子模型来降低维度。 通过将 p x p 共变量矩阵分解成两个组成部分的总和, 实现这一点的办法是将p x p 共变量矩阵分解为两个组成部分。 通过潜伏要素代表, 它们可以被解释为一种关于特异性差异和共同变异矩阵的对数矩阵, 即p x k 因子装载矩阵及其转移的产物。 如果 k ⁇ ⁇ p, 则定义了共变量矩阵的稀疏因子化。 从历史上看, 很少注意利用要素模型将先前的信息纳入贝叶西亚分析中, 要素模型的最佳条件是, 要素加载的先行是不变的。 在这项工作中, 开发了一组结构化的前行模型, 能够对共享变异矩阵的依附结构概念进行编码。 构建该模型可以使数据知情的缩小到明智的参数矩阵结构, 同时便利对因素数的推论。 如果采用不经过一定的重新校准的测量, 该方法将扩展为固定动态要素模型。 对于计算推论, 参数推论, 参数推算、参数推算的Mark- 链 和Monteal Ex 样 样 样 的 的 模型 的 模型 的 的 的 的 的 的 的 的 。