We consider dynamic random trees constructed using an attachment function $f : \mathbb{N} \to \mathbb{R}_+$ where, at each step of the evolution, a new vertex attaches to an existing vertex $v$ in the current tree with probability proportional to $f$(degree(v)). We explore the effect of a change point in the system; the dynamics are initially driven by a function f until the tree reaches size $\tau(n) \in (0,n)$, at which point the attachment function switches to another function, $g$, until the tree reaches size $n$. Two change point time scales are considered, namely the standard model where $\tau(n) = \gamma n$, and the quick big bang model where $\tau(n) = n^\gamma$, for some $0 < \gamma < 1$. In the former case, we obtain deterministic approximations for the evolution of the empirical degree distribution (EDF) in sup-norm and use these to devise a provably consistent non-parametric estimator for the change point $\gamma$. In the latter case, we show that the effect of pre-change point dynamics asymptotically vanishes in the EDF, although this effect persists in functionals such as the maximal degree. Our proofs rely on embedding the discrete time tree dynamics in an associated (time) inhomogeneous continuous time branching process (CTBP). In the course of proving the above results, we develop novel mathematical techniques to analyze both homogeneous and inhomogeneous CTBPs and obtain rates of convergence for functionals of such processes, which are of independent interest.
翻译:我们考虑使用附加函数 $f 构建动态随机树 :\ mathrialbb{N}\ to\ a\ mathb{R ⁇ $, 在进化的每个步骤中, 一个新的顶点与当前树中现有的顶点$v$挂钩, 概率与美元成正比(度(v) ) 。 我们探索系统中一个变化点的影响; 动态最初由函数 f 驱动, 直到树达到 $\ tau(n) = 美元( 0,n) 。 在前一个案例中, 依附函数函数切换到另一个函数, $g$( g$), 直到树的大小达到美元。 考虑两个变化点的顶点时间尺度, 即标准模型, $\ tau(n) = n ⁇ amma$(n) = n ⁇ amma$,, 在大约 $0 < gamamamam (n) 。 在前一个案例中, 我们从直径直径(e) 直径(e) 直径(e) 直径(e) 直径) 直径(e) 直径(e) ro) ro) roal) ro) 速度(y) rout) rout) 和直) or) 时间(在 时间(s) 时间( seal) seal) seal) seal) yal) vial) vial) pral) vial) vical) vical) vical) 中, vide vical) vical vices (我们直) vical) vical) vical) 。