In the present work, we provide the general expression of the normalized centered moments of the Fr\'echet extreme-value distribution. In order to try to represent a set of data corresponding to rare events by a Fr\'echet distribution, it is important to be able to determine its characteristic parameter $\alpha$. Such a parameter can be deduced from the variance (proportional to the square of the Full Width at Half Maximum) of the studied distribution. However, the corresponding equation requires a numerical resolution. We propose two simple estimates of $\alpha$ from the knowledge of the variance, based on the Laurent series of the Gamma function. The most accurate expression involves the Ap\'ery constant.
翻译:本研究提供了Fréchet极值分布的标准化中心矩的通用表达式。为了将一个罕见事件的数据集表示为一个Fréchet分布,确定其特征参数$\alpha$非常重要。这样的参数可以从所研究分布的方差(与半高全宽的平方成比例)中推出。然而,相应的方程需要进行数值解析。我们提出了两种简单的根据Gamma函数的Laurent级数从方差中估算$\alpha$的方法。最准确的表达式涉及Apéry常数。