Accurate and unbiased examinations of skin lesions are critical for the early diagnosis and treatment of skin conditions and disorders. Visual features of skin lesions vary significantly because the images are collected from patients with different lesion colours and morphologies by using dissimilar imaging equipment. Recent studies have reported ensembled convolutional neural networks (CNNs) to classify the images for early diagnosis of skin disorders. However, the practical use of these ensembled CNNs is limited because they are heavyweight and inadequate for using contextual information. Although lightweight networks (e.g., MobileNetV3 and EfficientNet) were developed to achieve parameters reduction for implementing deep neural networks on mobile devices, insufficient depth of feature representation restricts the performance. To address the existing limitations, we introduce a new lite and effective neural network, namely HierAttn. The HierAttn applies a novel strategy to learn the local and global features by using multi-stage and multi-branch attention mechanisms. The efficacy of HierAttn was evaluated by using the dermoscopy images dataset ISIC2019 and smartphone photos dataset PAD-UFES-20 (PAD20). The experimental results show that HierAttn achieves the best accuracy and AUC among the state-of-the-art lightweight networks. The code is available at https://github.com/anthonyweidai/HierAttn.
翻译:对皮肤损伤进行准确和公正的检查对于早期诊断和治疗皮肤状况和失调症至关重要,皮肤损伤的视觉特征差异很大,因为通过使用不同成像设备从具有不同腐蚀颜色和形态的病人那里收集了图像,因此,皮肤损伤的视觉特征差异很大,因为通过使用不同成像设备收集了这些图像,最近的研究报告说,混合的卷发神经网络(CNNs)对图像进行分类,以便早期诊断皮肤紊乱。然而,这些被围的CNN的实用使用有限,因为它们重量过重,不能充分使用背景信息。虽然开发了轻量网络(例如,MiveNetV3和高效Net),以降低在移动设备上实施深线性神经网络的参数,但特征的深度不够,限制了其性能。为了解决现有的局限性,我们引入了新的精度和有效的神经神经网络,即HierAttn, 运用了一种新的战略,通过多级和多级注意机制来学习当地和全球特征。HierAttn的功效,但通过使用温度图像图像数据系统/2019年/20年的智能智能智能智能智能智能智能智能智能智能智能智能智能智能智能智能智能智能智能智能智能智能智能智能智能智能智能智能智能智能智能智能智能智能智能智能智能智能数据显示系统,在ADADSDADADSUBADSUBSDADSA,在多级网络中,在S-ADSUBSDSDSDSBSADSDSDSDSDSDSDSDSDADADSDSDSDSDSDSDADADADSDSDSDSDSDSDADADS 。