Accurate and unbiased examinations of skin lesions are critical for the early diagnosis and treatment of skin conditions and disorders. Visual features of skin lesions vary significantly because the images are collected from patients with different lesion colours and morphologies by using dissimilar imaging equipment. Recent studies have reported ensembled convolutional neural networks (CNNs) to classify the images for early diagnosis of skin disorders. However, the practical use of these ensembled CNNs is limited because they are heavyweight and inadequate for using contextual information. Although lightweight networks (e.g., MobileNetV3 and EfficientNet) were developed to achieve parameters reduction for implementing deep neural networks on mobile devices, insufficient depth of feature representation restricts the performance. To address the existing limitations, we introduce a new lite and effective neural network, namely HierAttn. The HierAttn applies a novel strategy to learn the local and global features by using multi-stage and multi-branch attention mechanisms. The efficacy of HierAttn was evaluated by using the dermoscopy images dataset ISIC2019 and smartphone photos dataset PAD-UFES-20 (PAD20). The experimental results show that HierAttn achieves the best accuracy and AUC among the state-of-the-art lightweight networks. The code is available at https://github.com/anthonyweidai/HierAttn.


翻译:对皮肤损伤进行准确和公正的检查对于早期诊断和治疗皮肤状况和失调症至关重要,皮肤损伤的视觉特征差异很大,因为通过使用不同成像设备从具有不同腐蚀颜色和形态的病人那里收集了图像,因此,皮肤损伤的视觉特征差异很大,因为通过使用不同成像设备收集了这些图像,最近的研究报告说,混合的卷发神经网络(CNNs)对图像进行分类,以便早期诊断皮肤紊乱。然而,这些被围的CNN的实用使用有限,因为它们重量过重,不能充分使用背景信息。虽然开发了轻量网络(例如,MiveNetV3和高效Net),以降低在移动设备上实施深线性神经网络的参数,但特征的深度不够,限制了其性能。为了解决现有的局限性,我们引入了新的精度和有效的神经神经网络,即HierAttn, 运用了一种新的战略,通过多级和多级注意机制来学习当地和全球特征。HierAttn的功效,但通过使用温度图像图像数据系统/2019年/20年的智能智能智能智能智能智能智能智能智能智能智能智能智能智能智能智能智能智能智能智能智能智能智能智能智能智能智能智能智能智能智能智能智能智能智能智能智能智能数据显示系统,在ADADSDADADSUBADSUBSDADSA,在多级网络中,在S-ADSUBSDSDSDSBSADSDSDSDSDSDSDSDSDADADSDSDSDSDSDSDADADADSDSDSDSDSDSDADADS 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
60+阅读 · 2020年3月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年7月20日
Arxiv
31+阅读 · 2021年6月30日
Arxiv
11+阅读 · 2018年10月17日
Arxiv
19+阅读 · 2018年3月28日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员