项目名称: 基于亚波长结构实现高效发光器件的研究

项目编号: No.11274159

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 张学进

作者单位: 南京大学

项目金额: 93万元

中文摘要: 谐振腔结构和光子晶体结构有利于提高发光器件的发光效率,表面等离激元也被证实可以用来提高发光效率,也因此成为这些年来的研究热点,除了表面等离激元,局域等离谐振也能被用来增强发光效率。从下至上法制备的半导体纳米线/带因为其高的晶体质量、具有光滑表面的谐振腔结构,已经被人们用来做成纳米激光器。如果将这种高效纳米发光材料的发光效率进一步提高,则会推进其走向实际应用的步伐。我们引入亚波长结构来实现这一目的,在理论上设计并计算出这一体系的色散关系,进一步借助于有限元和有限差分方法深入研究这一系统。实验上利用EBL、FIB、SEM、AFM等微/纳加工技术制备与表征一维、二维和三维金属亚波长纳米结构,最终实现对半导体纳米线/带的发光性能以及亚波长光传播的调控,探索其在高效纳米发光器件上的应用。

中文关键词: 极化激元;发光器件;纳米光子学;纳米材料;亚波长光学

英文摘要: Many techniques have been developed to enhance the efficiency of light-emitting devices. For examples, resonant cavities can enhance light extraction by increasing photon density of states (DOS). Photonic crystal structures can enhance light extraction by recovering the guided modes, which are responsible for losses in light-emitting devices. Recently, surface plasmon polariton (SPP) has been shown to improve the emission efficiency of light-emitting devices. Apart from surface-enhanced Raman scattering, localized surface plasmon resonance can also induce surface-enhanced emission, owing to the size of "hot" spots, where the incident fields are strongly enhanced. The larger the SPP-DOS and electric field, the higher is the spontaneous emission rate into the SPP mode. The emission enhancement is realized if the resultant SPP mode re-emits. On the other hand, semiconductor nanoribbons and nanowires fabricated from bottom-up approaches have the natural advantages of inherent optical cavities with smooth surfaces, as well as single crystallinity of high quality. Moreover, electrically-driven single emitters based on individual nanoribbons and nanowires have been realized. Therefore, introduction of SPP-mediated enhancement to the emission efficiency of nanowire/nanoribbon-based emitters for practical applications is

英文关键词: polariton;light-emitting device;nano-photonics;nanomaterials;subwavelength optics

成为VIP会员查看完整内容
0

相关内容

深度神经网络FPGA设计进展、实现与展望
专知会员服务
34+阅读 · 2022年3月21日
【ICLR2022】通过传播网络编码学习通用的神经结构
专知会员服务
12+阅读 · 2022年2月13日
专知会员服务
54+阅读 · 2021年10月4日
专知会员服务
112+阅读 · 2021年9月22日
《6G总体愿景与潜在关键技术》白皮书,32页pdf
专知会员服务
104+阅读 · 2021年6月8日
专知会员服务
15+阅读 · 2021年6月6日
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
Science:量子计算机成功创造时间晶体
学术头条
0+阅读 · 2021年11月20日
神操作!RM让ResNet等价转换为Plain架构
极市平台
0+阅读 · 2021年11月6日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
设计和实现一款轻量级的爬虫框架
架构文摘
13+阅读 · 2018年1月17日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Salient Objects in Clutter
Arxiv
0+阅读 · 2022年4月18日
ResT V2: Simpler, Faster and Stronger
Arxiv
0+阅读 · 2022年4月15日
Arxiv
56+阅读 · 2021年5月3日
小贴士
相关VIP内容
深度神经网络FPGA设计进展、实现与展望
专知会员服务
34+阅读 · 2022年3月21日
【ICLR2022】通过传播网络编码学习通用的神经结构
专知会员服务
12+阅读 · 2022年2月13日
专知会员服务
54+阅读 · 2021年10月4日
专知会员服务
112+阅读 · 2021年9月22日
《6G总体愿景与潜在关键技术》白皮书,32页pdf
专知会员服务
104+阅读 · 2021年6月8日
专知会员服务
15+阅读 · 2021年6月6日
相关资讯
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
Science:量子计算机成功创造时间晶体
学术头条
0+阅读 · 2021年11月20日
神操作!RM让ResNet等价转换为Plain架构
极市平台
0+阅读 · 2021年11月6日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
设计和实现一款轻量级的爬虫框架
架构文摘
13+阅读 · 2018年1月17日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员