Design flow parameters are of utmost importance to chip design quality and require a painfully long time to evaluate their effects. In reality, flow parameter tuning is usually performed manually based on designers' experience in an ad hoc manner. In this work, we introduce a machine learning-based automatic parameter tuning methodology that aims to find the best design quality with a limited number of trials. Instead of merely plugging in machine learning engines, we develop clustering and approximate sampling techniques for improving tuning efficiency. The feature extraction in this method can reuse knowledge from prior designs. Furthermore, we leverage a state-of-the-art XGBoost model and propose a novel dynamic tree technique to overcome overfitting. Experimental results on benchmark circuits show that our approach achieves 25% improvement in design quality or 37% reduction in sampling cost compared to random forest method, which is the kernel of a highly cited previous work. Our approach is further validated on two industrial designs. By sampling less than 0.02% of possible parameter sets, it reduces area by 1.83% and 1.43% compared to the best solutions hand-tuned by experienced designers.
翻译:设计流程参数对于芯片设计质量至关重要, 并且需要相当长的时间来评估其效果。 事实上, 流动参数的调整通常是根据设计者的经验以临时方式手工进行的。 在这项工作中, 我们采用了一种基于机器的学习自动参数调整方法, 目的是在有限的试验中找到最佳的设计质量。 我们不仅在机器学习引擎中插上插头, 我们还开发集群和大致抽样技术来提高调试效率。 这种方法的特征提取可以重新利用先前设计的知识。 此外, 我们利用了最先进的XGBoost 模型, 并提出了一种新颖的动态树技术来克服过度适应。 基准电路实验结果显示, 我们的方法在设计质量上实现了25%的改进, 与随机森林方法相比, 取样成本降低了37%, 随机法是以前大量引用过的工程的内核。 我们的方法在两种工业设计上进一步得到验证。 通过取样不到0.02%的可能参数组的知识, 将面积减少1.83% 和1.43%, 与有经验的设计师手调的最佳解决方案相比, 将面积减少1.83% 和1.43% 43% 。