Human cognition model could help us gain insights in how human cognition behaviors work under external stimuli, pave the way for synthetic data generation, and assist in adaptive intervention design for cognition regulation. When the external stimuli is highly dynamic, it becomes hard to model the effect that how the stimuli influences human cognition behaviors. Here we propose a novel hybrid deep reinforcement learning (HDRL) framework integrating drift-diffusion model to simulate the effect of dynamic time pressure on human cognition performance. We start with a N=50 user study to investigate how different factors may affect human performance, which help us gain prior knowledge in framework design. The evaluation demonstrates that this framework could improve human cognition modeling quantitatively and capture the general trend of human cognition behaviors qualitatively. Our framework could also be extended to explore and simulate how different external factors play a role in human behaviors.
翻译:人类认知模型可以帮助我们深入了解人类认知行为如何在外部刺激下发挥作用,为合成数据生成铺平道路,并协助为认知监管提供适应性干预设计。当外部刺激高度活跃时,很难模拟刺激如何影响人类认知行为的效果。在这里,我们提出一个新的混合深层强化学习框架(HDRL),将漂浮扩散模型纳入模拟动态时间压力对人类认知绩效的影响。我们从N=50用户研究开始,以研究不同因素如何影响人类绩效,这有助于我们在框架设计中事先获得知识。评估表明,这一框架可以提高人类认知模型的建模,并捕捉人类认知行为质量的一般趋势。我们的框架还可以扩展,以探索和模拟不同外部因素在人类行为中的作用。