The data needed for machine learning (ML) model training, can reside in different separate sites often termed data silos. For data-intensive ML applications, data silos pose a major challenge: the integration and transformation of data demand a lot of manual work and computational resources. With data privacy and security constraints, data often cannot leave the local sites, and a model has to be trained in a decentralized manner. In this work, we present a vision on how to bridge the traditional data integration (DI) techniques with the requirements of modern machine learning. We explore the possibilities of utilizing metadata obtained from data integration processes for improving the effectiveness and efficiency of ML models. We analyze two common use cases over data silos, feature augmentation and federated learning. Bringing data integration and machine learning together, we highlight the new research opportunities from the aspects of systems, representations, factorized learning and federated learning.


翻译:机器学习(ML)模型培训所需的数据可以存放在不同不同的地点,通常称为数据筒仓。对于数据密集的 ML 应用程序,数据筒仓是一个重大挑战:数据集成和转换需要大量手工工作和计算资源。由于数据隐私和安全方面的限制,数据往往不能离开当地地点,而模型必须分散培训。在这项工作中,我们提出了如何将传统数据集成技术与现代机器学习要求联系起来的愿景。我们探索了利用数据集成流程获得的元数据提高ML模型效力和效率的可能性。我们分析了两个关于数据筒仓、特征增强和联合学习的共同使用案例。把数据集成和机器学习结合起来,我们从系统、演示、要素化学习和联合学习等方面强调新的研究机会。</s>

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
20+阅读 · 2022年10月10日
Arxiv
19+阅读 · 2022年7月29日
Arxiv
35+阅读 · 2021年8月2日
A Modern Introduction to Online Learning
Arxiv
20+阅读 · 2019年12月31日
Arxiv
45+阅读 · 2019年12月20日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员