Time-series prediction has drawn considerable attention during the past decades fueled by the emerging advances of deep learning methods. However, most neural network based methods lack interpretability and fail in extracting the hidden mechanism of the targeted physical system. To overcome these shortcomings, an interpretable sparse system identification method without any prior knowledge is proposed in this study. This method adopts the Fourier transform to reduces the irrelevant items in the dictionary matrix, instead of indiscriminate usage of polynomial functions in most system identification methods. It shows an interpretable system representation and greatly reduces computing cost. With the adoption of $l_1$ norm in regularizing the parameter matrix, a sparse description of the system model can be achieved. Moreover, Three data sets including the water conservancy data, global temperature data and financial data are used to test the performance of the proposed method. Although no prior knowledge was known about the physical background, experimental results show that our method can achieve long-term prediction regardless of the noise and incompleteness in the original data more accurately than the widely-used baseline data-driven methods. This study may provide some insight into time-series prediction investigations, and suggests that an white-box system identification method may extract the easily overlooked yet inherent periodical features and may beat neural-network based black-box methods on long-term prediction tasks.
翻译:在过去几十年中,时间序列的预测由于深层次学习方法的不断进步而引起相当的注意,然而,大多数以神经网络为基础的方法缺乏可解释性,而且无法提取目标物理系统的隐藏机制。为克服这些缺陷,本研究报告提议了一种不事先知情的可解释的稀有系统识别方法。这种方法采用Fourier变换方法,以减少字典矩阵中无关的物品,而不是在大多数系统识别方法中不加区别地使用多功能。它显示了一种可解释的系统代表,并大大降低了计算成本。随着在参数矩阵正规化中采用1美元的标准,系统模型的描述就能够实现。此外,使用三套数据集,包括水保护数据、全球温度数据和金融数据,用以测试拟议方法的性能。虽然事先并不知道实际背景,但实验结果显示,我们的方法可以实现长期预测,而不论原始数据的噪音和不完整程度比广泛使用的基线数据驱动方法更为准确。这项研究可能提供时间序列预测调查的一些深入的见解,因此可以实现系统模型的稀少的描述。此外,还表明,基于白箱的系统识别方法可能很容易地提取内部的预测方法。</s>