Serverless computing, in particular the Function-as-a-Service (FaaS) execution model, has recently shown to be effective for running large-scale computations. However, little attention has been paid to highly-parallel applications with unbalanced and irregular workloads. Typically, these workloads have been kept out of the cloud due to the impossibility of anticipating their computing resources ahead of time, frequently leading to severe resource over- and underprovisioning situations. Our main insight in this article is, however, that the elasticity and ease of management of serverless computing technology can be a key enabler for effectively running these problematic workloads for the first time in the cloud. More concretely, we demonstrate that with a simple serverless executor pool abstraction one can achieve a better cost-performance trade-off than a Spark cluster of static size built upon large EC2 virtual machines. To support this conclusion, we evaluate three irregular algorithms: Unbalanced Tree Search (UTS), Mandelbrot Set using the Mariani-Silver algorithm and Betweenness Centrality (BC) on a random graph. For instance, our serverless implementation of UTS is able to outperform Spark by up to 55% with the same cost. We also show that a serverless environment can outperform a large EC2 in the BC algorithm by a 10% using the same amount of virtual CPUs. This provides the first concrete evidence that highly-parallel, irregular workloads can be efficiently executed using purely stateless functions with almost zero burden on users i.e., no need for users to understand non-obvious system-level parameters and optimizations. Furthermore, we show that UTS can benefit from the FaaS pay-as-you-go billing model, which makes it worth for the first time to enable certain application-level optimizations that can lead to significant improvements (e.g. of 41%) with negligible increase in cost.


翻译:无服务器计算, 特别是“ 函数- 服务( FaaS) ” 执行模式, 近来显示, 没有服务器的运行速度在大规模计算中是有效的。 但是, 很少注意高度平行的应用程序, 且工作量不平衡且不规则。 通常, 这些工作量被挡在云层之外, 因为无法提前预测其计算资源, 经常导致严重的资源过剩和供给不足。 然而, 我们在本篇文章中的主要洞察力是, 没有服务器的计算技术管理弹性和方便性, 可以成为在云层中第一次有效运行这些有问题的工作量的关键推进器。 然而, 我们很少注意高度平衡的应用程序。 我们用一个简单的服务器执行器执行器, 一个比在大型 EC2 虚拟机器上建立的一个静态的组更符合成本- 。 为了支持这一结论, 我们评估三种不规则的算法: 不平衡的树搜索(UTS), Mandelbrout Set Set, 使用马里亚- Silver 算法, 和 Calness Cent (B) 在随机的图表中, 等, 使用一个不透明的系统, 使用一个不固定的系统可以显示一个不固定的Strode 。

0
下载
关闭预览

相关内容

悉尼科技大学(University of Technology Sydney),简称“悉尼科大”(UTS),位于澳大利亚金融和经济中心悉尼,著名公立研究型大学,2020年与美国匹兹堡大学并列位居QS世界排名140名,2019年获得世界五星级高校认证。悉尼科技大学拥有多元文化的校园和充满活力的国际交流与研究计划,帮助毕业生为现在和未来的工作做好准备。学校有超过40,000名学生,其中国际留学生超过10,000名,是澳大利亚规模最大的大学之一。
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年8月20日
Arxiv
0+阅读 · 2022年8月20日
Arxiv
0+阅读 · 2022年8月19日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员