In learning theory, the performance of an online policy is commonly measured in terms of the static regret metric, which compares the cumulative loss of an online policy to that of an optimal benchmark in hindsight. In the definition of static regret, the action of the benchmark policy remains fixed throughout the time horizon. Naturally, the resulting regret bounds become loose in non-stationary settings where fixed actions often suffer from poor performance. In this paper, we investigate a stronger notion of regret minimization in the context of online caching. In particular, we allow the action of the benchmark at any round to be decided by a finite state machine containing any number of states. Popular caching policies, such as LRU and FIFO, belong to this class. Using ideas from the universal prediction literature in information theory, we propose an efficient online caching policy with a sub-linear regret bound. To the best of our knowledge, this is the first data-dependent regret bound known for the caching problem in the universal setting. We establish this result by combining a recently-proposed online caching policy with an incremental parsing algorithm, namely Lempel-Ziv '78. Our methods also yield a simpler learning-theoretic proof of the improved regret bound as opposed to the involved problem-specific combinatorial arguments used in the earlier works.
翻译:在学习理论中,在线政策的表现通常以静态遗憾衡量,将在线政策的累积损失与事后观察的最佳基准相比较。在静态遗憾的定义中,基准政策的行动在整个时间跨度中保持不变。自然,由此产生的遗憾界限在非静止环境中变得松散,固定行动往往表现不佳。在本文中,我们调查了在网上缓冲背景下将遗憾最小化的更强烈概念。特别是,我们允许由包含任何州数目的限定国家机器决定的任何回合的基准行动。一般的缓冲政策,如LRU和FIFFO,属于这一类。利用信息理论中普遍预测文献中的观点,我们提出了一个高效的在线缓冲政策,并附带了子线性遗憾。据我们所知,这是在普遍环境中因缓冲问题而认识的第一个依赖数据的遗憾。我们通过将最近推出的在线缓冲政策与渐进式算法,即Lempel-Viv'78年的递增算法结合起来,我们的方法也属于这一类。我们利用信息理论中通用预测文献文献的观点,提出了一种高效的在线缓冲政策,我们用了一个更简单的方法作为更精确的实验性的证据。