The line coverage problem is to find efficient routes for coverage of linear features by one or more resource-constrained robots. Linear features model environments such as road networks, power lines, and oil and gas pipelines. We define two modes of travel for the robots: servicing and deadheading. A robot services a feature if it performs task-specific actions, e.g., taking images, as it traverses the feature; otherwise, it is deadheading. Traversing the environment incurs costs (e.g., travel time) and demands on resources (e.g., battery life). Servicing and deadheading can have different cost and demand functions, and we further permit them to be direction-dependent. We model the environment as a graph and provide an integer linear program. As the problem is NP-hard, we develop a fast and efficient heuristic algorithm, Merge-Embed-Merge (MEM). The constructive property of the algorithm enables solving the multi-depot version for large graphs. We further extend the MEM algorithm to handle turning costs and nonholonomic constraints. We benchmark the algorithm on a dataset of 50 road networks and demonstrate the algorithm in experiments using aerial robots on road networks.
翻译:线条覆盖问题在于寻找一条或多条资源受限制的机器人对线性特征进行覆盖的有效途径。线性特征模型环境,如公路网络、电力线以及石油和天然气管道。我们为机器人定义了两种旅行模式:服务与头饰。机器人服务了一个特征,如果它执行的是特定任务的行动,例如,拍摄图像,随着其特征的穿梭;否则,它就是致命的。环境变化带来成本(例如,旅行时间)和资源需求(例如,电池寿命)等。服务与头饰可能具有不同的成本和需求功能,我们进一步允许它们依赖方向。我们将环境建为图表并提供整形线性程序。由于问题很复杂,我们开发了快速有效的超光速算法、Merge-Embed-Mege(MEM)。算法的建设性性质使大型图表的多位版本得以解决。我们进一步扩展了MEM算法,以便处理成本转换和非热量限制。我们用50个公路网络的航空运算法测试了道路网络。我们用50个航空运算法对公路网络进行测试。