Earnings conference calls are attracting an increasing number of researchers due to their free form and rich information. Existing studies, however, do not take speaker role information into account. Furthermore, current research does not fully account for the impact of inter-company relationships on company risk. The only study that integrates company networks and earnings conference calls constructs an undirected graph for companies holding earnings conference calls at different dates, failing to meet the requirement of no temporal information leakage for prediction tasks. To address the aforementioned issues, we propose a new model called Temporal Virtual Graph Neural Network (TVGNN), which incorporates earnings conference calls and company networks to predict company risk. For the first time, our model incorporates participant role information in dialogue modeling. Moreover, we develop a new approach to construct company networks that ensures no temporal information leakage in the graph. In experiments, our proposed model outperforms all baselines. The supplementary analyses demonstrate the model's effectiveness and interpretability.
翻译:收入会议电话由于自由形式和信息丰富,吸引了越来越多的研究人员。但是,现有的研究没有考虑到演讲人的角色信息。此外,目前的研究没有充分考虑到公司间关系对公司风险的影响。将公司网络和收入会议电话相结合的唯一研究为在不同日期举行盈利会议电话的公司制作了一个无方向的图表,没有满足不泄露时间信息的要求,以完成预测任务。为了解决上述问题,我们提议了一个新的模型,即Temporal虚拟图象神经网络(TVGNN),其中包括收入会议电话和公司网络,以预测公司风险。我们的模型首次将参与者的角色信息纳入对话模型。此外,我们制定了一个新的方法来建设公司网络,确保不出现时间信息泄漏。在实验中,我们提议的模型超越了所有基线。补充分析证明了模型的有效性和可解释性。