Graph Neural Network (GNN) research is rapidly growing thanks to the capacity of GNNs to learn representations from graph-structured data. However, centralizing a massive amount of real-world graph data for GNN training is prohibitive due to user-side privacy concerns, regulation restrictions, and commercial competition. Federated learning (FL), a trending distributed learning paradigm, aims to solve this challenge while preserving privacy. Despite recent advances in vision and language domains, there is no suitable platform for the federated training of GNNs. To this end, we introduce FedGraphNN, an open research federated learning system and a benchmark to facilitate GNN-based FL research. FedGraphNN is built on a unified formulation of federated GNNs and supports commonly used datasets, GNN models, FL algorithms, and flexible APIs. We also contribute a new molecular dataset, hERG, to promote research exploration. Our experimental results present significant challenges in federated GNN training: federated GNNs perform worse in most datasets with a non-I.I.D split than centralized GNNs; the GNN model that attains the best result in the centralized setting may not hold its advantage in the federated setting. These results imply that more research efforts are needed to unravel the mystery behind federated GNN training. Moreover, our system performance analysis demonstrates that the FedGraphNN system is computationally affordable to most research labs with limited GPUs. We maintain the source code at https://github.com/FedML-AI/FedGraphNN.


翻译:由于GNN有能力从图表结构的数据中学习演示,GNN的研究正在迅速增加。然而,由于用户方面的隐私关切、监管限制和商业竞争,为GNN培训集中大量真实世界图形数据令人望而生畏,因为用户方面的隐私关切、监管限制和商业竞争。Federal Learning(FL),一个分布式的分布式学习模式,旨在解决这一挑战,同时保护隐私。尽管在视觉和语言领域最近有所进步,但是没有适合GNNN公司联合培训的平台。为此,我们引入了FedGraphNN,一个公开的研究联合联合学习系统和基准,以便利GNNNF的FFFF研究。FGGGGLPNNNNN是建立在联合GNNNNNNNNNNNNGs的统一配制基础上,支持通用的数据集、GNNF的算法和灵活的APIPS。我们实验结果显示,F公司在最先进的数据配置和最先进的GNNNF的GGMGF内部分析中,我们最先进的GNNF公司在CF内部的计算中,这些研究成绩显示,而GNNNNNF在CF的计算中最优于中央的成绩分析中可以证明。

0
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Arxiv
56+阅读 · 2021年5月3日
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
Arxiv
20+阅读 · 2019年11月23日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
相关论文
Top
微信扫码咨询专知VIP会员