Graph Neural Networks (GNNs) are gaining increasing attention on graph data learning tasks in recent years. However, in many applications, graph may be coming in an incomplete form where attributes of graph nodes are partially unknown/missing. Existing GNNs are generally designed on complete graphs which can not deal with attribute-incomplete graph data directly. To address this problem, we develop a novel partial aggregation based GNNs, named Partial Graph Neural Networks (PaGNNs), for attribute-incomplete graph representation and learning. Our work is motivated by the observation that the neighborhood aggregation function in standard GNNs can be equivalently viewed as the neighborhood reconstruction formulation. Based on it, we define two novel partial aggregation (reconstruction) functions on incomplete graph and derive PaGNNs for incomplete graph data learning. Extensive experiments on several datasets demonstrate the effectiveness and efficiency of the proposed PaGNNs.


翻译:近些年来,图表神经网络(GNNs)在图形数据学习任务方面日益受到越来越多的关注,然而,在许多应用中,图表可能以不完整的形式出现,其中图形节点的属性部分不为人知/缺失。现有的GNNs一般设计在完整的图表上,无法直接处理属性不完整的图形数据。为解决这一问题,我们开发了一个基于GNS(称为部分图形神经网络(PaGNNs))的新型部分汇总,用于属性不完整的图形表达和学习。我们工作的动力是观察到,标准GNNs中的邻居集合功能可以等同于邻居重建配方。基于这一观察,我们定义了两个在不完整的图表上的新颖的部分集合(重建)功能,并引出PAGNNs用于不完整的图形数据学习。关于若干数据集的广泛实验显示了提议的PGNNs的有效性和效率。

1
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
155+阅读 · 2020年5月26日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
浅谈主动学习(Active Learning)
凡人机器学习
31+阅读 · 2020年6月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Arxiv
57+阅读 · 2021年5月3日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
3+阅读 · 2018年4月10日
VIP会员
相关资讯
浅谈主动学习(Active Learning)
凡人机器学习
31+阅读 · 2020年6月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Top
微信扫码咨询专知VIP会员