Understanding the fundamental principles behind the massive success of neural networks is one of the most important open questions in deep learning. However, due to the highly complex nature of the problem, progress has been relatively slow. In this note, through the lens of infinite-width networks, a.k.a. neural kernels, we present one such principle resulting from hierarchical localities. It is well-known that the eigenstructure of infinite-width multilayer perceptrons (MLPs) depends solely on the concept frequency, which measures the order of interactions. We show that the topologies from deep convolutional networks (CNNs) restructure the associated eigenspaces into finer subspaces. In addition to frequency, the new structure also depends on the concept space, which measures the spatial distance among nonlinear interaction terms. The resulting fine-grained eigenstructure dramatically improves the network's learnability, empowering them to simultaneously model a much richer class of interactions, including Long-Range-Low-Frequency interactions, Short-Range-High-Frequency interactions, and various interpolations and extrapolations in-between. Additionally, model scaling can improve the resolutions of interpolations and extrapolations and, therefore, the network's learnability. Finally, we prove a sharp characterization of the generalization error for infinite-width CNNs of any depth in the high-dimensional setting. Two corollaries follow: (1) infinite-width deep CNNs can break the curse of dimensionality without losing their expressivity, and (2) scaling improves performance in both the finite and infinite data regimes.


翻译:理解神经网络大规模成功背后的根本原则是深层学习中最重要的开放问题之一。 但是,由于问题高度复杂,进展相对缓慢。 在本说明中,我们通过无边网络的透镜, a.k.a.a.神经内核,提出了由等级位置产生的这样一个原则。众所周知,无限宽度多层感官(MLPs)的叶质结构完全取决于概念频率,它测量了深度互动的顺序。我们表明,深层银度网络(CNNs)的表面结构将相关的静态空间重组为细小的亚空间。除了频率外,新结构还取决于概念空间,它测量非线性互动条件之间的空间。由此形成的精细度结构极大地改善了网络的可学习性,使他们有能力同时模拟一种更丰富的互动,包括长线-线性互动的频率。 短期网络(CNNs) 将相关的静态空间重组为更细小的亚空间。 高端网络的伸缩性能和不同层次的变异性(我们之间) 的变异性、 变变的变的变性、变异性、变异性网络的变的变性、变性、变的变性、变的变的变性、变性、变性、变性、变的变的变的变的变性、变的变的变的变和变的变的变性、变性、变的变的变的变的变的变性、变的变的变性、变的变的变性、变的变和变和变性。

0
下载
关闭预览

相关内容

迄今为止,产品设计师最友好的交互动画软件。

【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
155+阅读 · 2020年5月26日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
32+阅读 · 2020年4月15日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Exact Solutions of a Deep Linear Network
Arxiv
0+阅读 · 2022年2月14日
Arxiv
3+阅读 · 2018年8月17日
Arxiv
19+阅读 · 2018年6月27日
Arxiv
5+阅读 · 2018年5月31日
VIP会员
相关VIP内容
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
155+阅读 · 2020年5月26日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
32+阅读 · 2020年4月15日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员