We establish generalization error bounds for stochastic gradient Langevin dynamics (SGLD) with constant learning rate under the assumptions of dissipativity and smoothness, a setting that has received increased attention in the sampling/optimization literature. Unlike existing bounds for SGLD in non-convex settings, ours are time-independent and decay to zero as the sample size increases. Using the framework of uniform stability, we establish time-independent bounds by exploiting the Wasserstein contraction property of the Langevin diffusion, which also allows us to circumvent the need to bound gradients using Lipschitz-like assumptions. Our analysis also supports variants of SGLD that use different discretization methods, incorporate Euclidean projections, or use non-isotropic noise.
翻译:我们为悬浮梯度朗埃文动态(SGLD)设定了通用误差界限,在消散和平稳的假设下不断学习率,这种环境在取样/优化文献中受到越来越多的关注。 与非康韦克斯环境中现有的SGLD界限不同,我们的时间是独立的,随着样本规模的增加,我们的时间将衰减为零。 我们利用统一的稳定性框架,通过利用Langevin扩散的瓦西尔斯坦收缩特性,建立了时间独立的界限,这也使我们能够避免使用Lipschitz式假设约束梯度的必要性。 我们的分析还支持了使用不同离散方法、纳入Euclidean预测或使用非地球噪音的SGLD变量。