We propose a diffractive neural network with strong robustness based on Weight Noise Injection training, which achieves accurate and fast optical-based classification while diffraction layers have a certain amount of surface shape error. To the best of our knowledge, it is the first time that using injection weight noise during training to reduce the impact of external interference on deep learning inference results. In the proposed method, the diffractive neural network learns the mapping between the input image and the label in Weight Noise Injection mode, making the network's weight insensitive to modest changes, which improve the network's noise resistance at a lower cost. By comparing the accuracy of the network under different noise, it is verified that the proposed network (SRNN) still maintains a higher accuracy under serious noise.


翻译:根据我们所知,这是第一次在训练期间使用注射重力噪音来减少外部干扰对深学推断结果的影响。在拟议方法中,差异性神经网络学习输入图像与Wightnoise注射模式标签之间的映射,使网络的重量对微小变化不敏感,这些变化以较低的成本提高了网络的噪音抵抗力。通过比较不同噪音下网络的准确性,可以核实拟议的网络(SRNNN)在严重噪音下仍然保持更高的准确性。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Teacher-Student Training for Robust Tacotron-based TTS
Arxiv
6+阅读 · 2019年3月19日
Neural Speech Synthesis with Transformer Network
Arxiv
5+阅读 · 2019年1月30日
Arxiv
3+阅读 · 2018年8月17日
Arxiv
5+阅读 · 2017年9月8日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员