Aspect-based sentiment analysis (ABSA) aims at analyzing the sentiment of a given aspect in a sentence. Recently, neural network-based methods have achieved promising results in existing ABSA datasets. However, these datasets tend to degenerate to sentence-level sentiment analysis because most sentences contain only one aspect or multiple aspects with the same sentiment polarity. To facilitate the research of ABSA, NLPCC 2020 Shared Task 2 releases a new large-scale Multi-Aspect Multi-Sentiment (MAMS) dataset. In the MAMS dataset, each sentence contains at least two different aspects with different sentiment polarities, which makes ABSA more complex and challenging. To address the challenging dataset, we re-formalize ABSA as a problem of multi-aspect sentiment analysis, and propose a novel Transformer-based Multi-aspect Modeling scheme (TMM), which can capture potential relations between multiple aspects and simultaneously detect the sentiment of all aspects in a sentence. Experiment results on the MAMS dataset show that our method achieves noticeable improvements compared with strong baselines such as BERT and RoBERTa, and finally ranks the 2nd in NLPCC 2020 Shared Task 2 Evaluation.
翻译:最近,以神经网络为基础的方法在已有的ABSA数据集中取得了令人乐观的结果。然而,这些数据集往往退化为判刑层面的情绪分析,因为大多数句子只包含一个方面或多个方面,其情绪极度相同。为了便利对ABSA的研究,全国男女同性恋者理事会2020年共同任务2发布了一个新的大型多角度多层次访问数据集(MAMS)。在MAMS数据集中,每个句子至少包含两个不同方面,其情绪极性不同,使ABSA更加复杂和具有挑战性。为了应对具有挑战性的数据集,我们重新将ABSA正规化为多层次情绪分析问题,并提出一个新的基于变异器的多层建模计划(TMMM),该计划可以捕捉多个方面之间的潜在关系,同时检测句子中所有方面的感受。MAMS数据集的实验结果表明,我们的方法比BERT和ROBERTA等强有力的基线有了显著的改进,而NERP和ROBERTA最终在2020年任务2评估中排名第2级。