Aspect-based sentiment analysis (ABSA) is a more detailed task in sentiment analysis, by identifying opinion polarity toward a certain aspect in a text. This method is attracting more attention from the community, due to the fact that it provides more thorough and useful information. However, there are few language-specific researches on Persian language. The present research aims to improve the ABSA on the Persian Pars-ABSA dataset. This research shows the potential of using pre-trained BERT model and taking advantage of using sentence-pair input on an ABSA task. The results indicate that employing Pars-BERT pre-trained model along with natural language inference auxiliary sentence (NLI-M) could boost the ABSA task accuracy up to 91% which is 5.5% (absolute) higher than state-of-the-art studies on Pars-ABSA dataset.
翻译:以外观为基础的情绪分析(ABSA)在情绪分析方面是一项更为详细的任务,方法是查明对文本中某一方面的意见极性。由于这种方法提供了更加透彻和有用的信息,因此吸引了社区更多的关注。然而,关于波斯语言的专项研究很少。本研究的目的是改进波斯Pars-ABSA数据集的ABSAABSA数据集的ABSA数据集。本研究显示了使用经过预先培训的BERT模型和利用在ABSA任务中使用句式输入的潜力。结果显示,采用Pars-BERT预先培训的模式以及自然语言推断辅助句(NLI-M)可以将ABSA任务精度提高到91%,比Pars-ABSA数据集的最新研究高出5.5%(绝对值)。