The common pipeline of training deep neural networks consists of several building blocks such as data augmentation and network architecture selection. AutoML is a research field that aims at automatically designing those parts, but most methods explore each part independently because it is more challenging to simultaneously search all the parts. In this paper, we propose a joint optimization method for data augmentation policies and network architectures to bring more automation to the design of training pipeline. The core idea of our approach is to make the whole part differentiable. The proposed method combines differentiable methods for augmentation policy search and network architecture search to jointly optimize them in the end-to-end manner. The experimental results show our method achieves competitive or superior performance to the independently searched results.


翻译:共同的深神经网络培训管道由数据增强和网络架构选择等几个构件组成。自动ML是一个旨在自动设计这些部件的研究领域,但大多数方法都是独立探索每个部分,因为同时搜索所有部件更具挑战性。在本文中,我们提出了数据增强政策和网络架构的联合优化方法,以使培训管道的设计更加自动化。我们方法的核心思想是使整个部分可以区分。拟议方法将增强政策搜索和网络架构搜索的不同方法结合起来,以端至端的方式共同优化它们。实验结果显示,我们的方法取得了与独立搜索的结果相比的竞争性或优异性。

0
下载
关闭预览

相关内容

数据增强在机器学习领域多指采用一些方法(比如数据蒸馏,正负样本均衡等)来提高模型数据集的质量,增强数据。
《神经架构搜索NAS》最新进展综述
专知会员服务
56+阅读 · 2020年8月12日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
42+阅读 · 2020年7月27日
专知会员服务
61+阅读 · 2020年3月19日
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
62+阅读 · 2020年2月17日
已删除
将门创投
4+阅读 · 2019年11月8日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Deep Learning & Neural Network 免费学习资源【译】
乐享数据DataScientists
5+阅读 · 2017年8月20日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
Arxiv
12+阅读 · 2018年9月5日
Arxiv
3+阅读 · 2018年6月24日
VIP会员
相关资讯
已删除
将门创投
4+阅读 · 2019年11月8日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Deep Learning & Neural Network 免费学习资源【译】
乐享数据DataScientists
5+阅读 · 2017年8月20日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员