In this paper, we propose a new data augmentation strategy named Thumbnail, which aims to strengthen the network's capture of global features. We get a generated image by reducing an image to a certain size, which is called as the thumbnail, and pasting it in the random position of the original image. The generated image not only retains most of the original image information but also has the global information in the thumbnail. Furthermore, we find that the idea of thumbnail can be perfectly integrated with Mixed Sample Data Augmentation, so we paste the thumbnail in another image where the ground truth labels are also mixed with a certain weight, which makes great achievements on various computer vision tasks. Extensive experiments show that Thumbnail works better than the state-of-the-art augmentation strategies across classification, fine-grained image classification, and object detection. On ImageNet classification, ResNet50 architecture with our method achieves 79.21% accuracy, which is more than 2.89% improvement on the baseline.
翻译:在本文中,我们提出了名为缩略图的新的数据增强策略, 目的是加强网络对全球特征的捕获。 我们通过将图像缩小到一定的大小( 缩略图), 并将其粘贴在原始图像的随机位置上, 获得了生成的图像。 生成的图像不仅保留了大部分原始图像信息, 还在缩略图中保留了全球信息 。 此外, 我们发现缩略图的概念可以与混合样本数据增强完美地融合在一起, 所以我们将缩略图粘贴在另一个图像中, 其中地面真实标签也与一定的重量混杂在一起, 从而在各种计算机视觉任务上取得了巨大成就 。 广泛的实验显示, 缩略图比最先进的增强战略在分类、 精细微图像分类和对象探测方面效果更好。 在图像网络分类方面, ResNet50 结构以我们的方法实现了79. 21% 的精确度, 这在基线上改进了2.89%以上 。