Measuring the predictability and complexity of time series is an essential tool in designing and controlling the nonlinear system. There exist different entropy measures in the literature to analyze the predictability and complexity of time series. However, these measures have some drawbacks especially in short time series. To overcome the difficulties, this paper proposes a new method for estimating the entropy of a time series using the LogNNet 784:25:10 neural network model. The LogNNet reservoir matrix consists of 19625 elements which is filled with the time series elements. After that, the network is trained on MNIST-10 dataset and the classification accuracy is calculated. The accuracy is considered as the entropy measure and denoted by NNetEn. A more complex transformation of the input information by the time series in the reservoir leads to higher NNetEn values. Many practical time series data have less than 19625 elements. Some duplicating or stretching methods are investigated to overcome this difficulty and the most successful method is identified for practical applications. The epochs number in the training process of LogNNet is considered as the input parameter. A new time series characteristic called time series learning inertia is introduced to investigate the effect of epochs number in the efficiency of neural network. To show the robustness and efficiency of the proposed method, it is applied on some chaotic, periodic, random, binary and constant time series. The NNetEn is compared with some existing entropy measures. The results show that the proposed method is more robust and accurate than existing methods.


翻译:测量时间序列的可预测性和复杂性是设计和控制非线性系统的一个基本工具。文献中存在分析时间序列的可预测性和复杂性的不同摄像量,但是,这些措施有一些缺点,特别是在短时间序列中。为了克服这些困难,本文件提出一种新的方法,用以利用LogNNet 784:25:10神经网络模型来估计时间序列的英特质。LogNNet库矩阵由19625 元素组成,并包含时间序列元素。之后,网络就MNIST-10数据集进行了培训,并计算了分类准确性。准确性被视为NNetEn的英特质计量,NNetEnter En。在时间序列中更复杂的输入信息转换导致NNetEn。许多实际的时间序列数据少于19625 5 元素。对一些重复性或伸缩方法进行了调查,以克服这一困难,并为实际应用确定了最成功的方法。在LogNNet的培训过程中,将精密的编号视为输入参数。在NNet网络中,将新的时间序列特性视为一种叫稳性测量方法,用来测量现有恒定性网络的效率。

0
下载
关闭预览

相关内容

专知会员服务
15+阅读 · 2021年5月21日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
44+阅读 · 2020年10月31日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员