In many areas of the brain, neural spiking activity covaries with features of the external world, such as sensory stimuli or an animal's movement. Experimental findings suggest that the variability of neural activity changes over time and may provide information about the external world beyond the information provided by the average neural activity. To flexibly track time-varying neural response properties, here we developed a dynamic model with Conway-Maxwell Poisson (CMP) observations. The CMP distribution can flexibly describe firing patterns that are both under- and over-dispersed relative to the Poisson distribution. Here we track parameters of the CMP distribution as they vary over time. Using simulations, we show that a normal approximation can accurately track dynamics in state vectors for both the centering and shape parameters ($\lambda$ and $\nu$). We then fit our model to neural data from neurons in primary visual cortex and "place cells" in the hippocampus. We find that this method out-performs previous dynamic models based on the Poisson distribution. The dynamic CMP model provides a flexible framework for tracking time-varying non-Poisson count data and may also have applications beyond neuroscience.
翻译:在大脑的许多领域,神经振荡活动在外表的外表特征,如感官刺激或动物运动等,神经活动在外表上的演动。实验结果显示,神经活动的变异性随时间变化而变化,并可能提供超出平均神经活动所提供信息以外的外部世界的信息。为了灵活跟踪时间变化的神经反应特性,我们在这里开发了一个动态模型,由Conway-Maxwell Poisson(CMP)观测到。CMP的分布可以灵活描述与Poisson分布相比,射电分布存在低和超分散的发射模式。在这里,我们跟踪CMP分布的参数随时间变化而变化。我们使用模拟,显示正常的近似性能够准确跟踪中央和形状参数($\lambda$和$\nu$)的状态矢量动态。然后,我们将我们的模型与主要视觉皮斯阵列中神经元和“固定细胞”的神经元数据匹配。我们发现,这种方法比Poisson分布上以前的动态模型更不灵活。动态CMP模型还提供了一个跟踪时间变化的神经科学应用框架。