Artificial Intelligence (AI) systems based solely on neural networks or symbolic computation present a representational complexity challenge. While minimal representations can produce behavioral outputs like locomotion or simple decision-making, more elaborate internal representations might offer a richer variety of behaviors. We propose that these issues can be addressed with a computational approach we call meta-brain models. Meta-brain models are embodied hybrid models that include layered components featuring varying degrees of representational complexity. We will propose combinations of layers composed using specialized types of models. Rather than using a generic black box approach to unify each component, this relationship mimics systems like the neocortical-thalamic system relationship of the mammalian brain, which utilizes both feedforward and feedback connectivity to facilitate functional communication. Importantly, the relationship between layers can be made anatomically explicit. This allows for structural specificity that can be incorporated into the model's function in interesting ways. We will propose several types of layers that might be functionally integrated into agents that perform unique types of tasks, from agents that simultaneously perform morphogenesis and perception, to agents that undergo morphogenesis and the acquisition of conceptual representations simultaneously. Our approach to meta-brain models involves creating models with different degrees of representational complexity, creating a layered meta-architecture that mimics the structural and functional heterogeneity of biological brains, and an input/output methodology flexible enough to accommodate cognitive functions, social interactions, and adaptive behaviors more generally. We will conclude by proposing next steps in the development of this flexible and open-source approach.


翻译:仅以神经网络或象征性计算为基础的人工智能(AI)系统是一个代表性复杂挑战。虽然最起码的表达方式可以产生运动或简单的决策等行为产出,但更复杂的内部陈述方式可以提供更丰富的行为形式。我们建议,这些问题可以通过一种我们称之为元脑模型的计算方法加以解决。元脑模型包含混合模型,其中包括具有不同程度代表性复杂性的分层组成部分。我们将提出使用特殊类型模型组成的多层组合。而不是使用通用黑盒方法来统一每个组成部分,这种关系模拟系统,例如哺乳动物大脑的神经皮层-细胞系统关系,它利用进料和反馈连接来便利功能性沟通。重要的是,层之间的关系可以从解剖上明确。这可以使结构特性具有可融入模型功能功能性,以有趣的方式纳入模型的功能性功能性功能性功能性。我们将提出若干类型的层次,可以执行独特的任务类型,从同时进行感应和感知的媒介,到下一个分子的形态-感官-感官系统关系,利用进料性和反馈的连接性连接性连接性连接性连接性交流。重要的是,两层之间的关系可以以解剖析为一种不同的结构结构结构结构,从而得出一个结构结构结构结构结构结构性分析方法。我们通过建立一个结构-结构结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-方法的形成-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构-结构

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年8月8日
Arxiv
0+阅读 · 2022年8月5日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员