Motivated by industrial computed tomography, we propose a memory efficient strategy to estimate the regularization hyperparameter of a non-smooth variational model. The approach is based on a combination of FISTA and Condat-Vu algorithms exploiting the convergence rate of the former and the low per-iteration complexity of the latter. The estimation is cast as a bilevel learning problem where a first-order method is obtained via reduced-memory automatic differentiation to compute the derivatives. The method is validated with experimental industrial tomographic data with the numerical implementation available.
翻译:暂无翻译