In recent years finite tensor products of reproducing kernel Hilbert spaces (RKHSs) of Gaussian kernels on the one hand and of Hermite spaces on the other hand have been considered in tractability analysis of multivariate problems. In the present paper we study countably infinite tensor products for both types of spaces. We show that the incomplete tensor product in the sense of von Neumann may be identified with an RKHS whose domain is a proper subset of the sequence space $\mathbb{R}^\mathbb{N}$. Moreover, we show that each tensor product of spaces of Gaussian kernels having square-summable shape parameters is isometrically isomorphic to a tensor product of Hermite spaces; the corresponding isomorphism is given explicitly, respects point evaluations, and is also an $L^2$-isometry. This result directly transfers to the case of finite tensor products. Furthermore, we provide regularity results for Hermite spaces of functions of a single variable.
翻译:近年来,在多变量问题的可移动性分析中,对高森内核和赫尔米特内核空间(RKHHS)的内核再生产的有限抗拉产品(RKHS)被视作多变量问题的可移动性分析。在本文件中,我们对两种类型的空间的无限多元产品进行了可计量的研究。我们表明,冯纽曼意义上的不完整的抗拉产品可能与RKHS相匹配,而后者的域是序列空间的恰当子集 $\mathb{R ⁇ mathb{N}。此外,我们还表明,高斯内核空间的每个可正同形形状参数的微粒产品都是对赫米特空间的多元性产物;相应的异形性被明确给出了,尊重点评价,同时也是一种价值为2美元的偏差。这直接转移到有限调制产品的情况。此外,我们为一个单一变量的功能的赫米特空间提供了定期性结果。