We present a model-agnostic post-processing scheme to improve the boundary quality for the segmentation result that is generated by any existing segmentation model. Motivated by the empirical observation that the label predictions of interior pixels are more reliable, we propose to replace the originally unreliable predictions of boundary pixels by the predictions of interior pixels. Our approach processes only the input image through two steps: (i) localize the boundary pixels and (ii) identify the corresponding interior pixel for each boundary pixel. We build the correspondence by learning a direction away from the boundary pixel to an interior pixel. Our method requires no prior information of the segmentation models and achieves nearly real-time speed. We empirically verify that our SegFix consistently reduces the boundary errors for segmentation results generated from various state-of-the-art models on Cityscapes, ADE20K and GTA5. Code is available at: https://github.com/openseg-group/openseg.pytorch.
翻译:我们提出了一个模型- 不可知后处理方案, 以改善任何现有分解模型产生的分解结果的边界质量。 我们的实验性观察认为, 内部像素的标签预测更加可靠, 我们提议用内部像素的预测取代原先不可靠的边界像素预测。 我们的方法只通过两个步骤处理输入图像:(i) 将边界像素本地化, (ii) 确定每个边界像素的相应内部像素。 我们通过从边界像素向内像素学习方向来建立通信。 我们的方法不需要事先了解分解模型的信息,而是要达到近实时速度。 我们的经验性核查, 我们的SegFix 持续减少从城市风景、 ADE20K 和 GTA5 等各种状态艺术模型产生的分解结果的边界差错。 代码可在 https://github.com/openseg- group/openseg.pytorch 上查到 。