Accurate flood detection in near real time via high resolution, high latency satellite imagery is essential to prevent loss of lives by providing quick and actionable information. Instruments and sensors useful for flood detection are only available in low resolution, low latency satellites with region re-visit periods of up to 16 days, making flood alerting systems that use such satellites unreliable. This work presents H2O-Network, a self supervised deep learning method to segment floods from satellites and aerial imagery by bridging domain gap between low and high latency satellite and coarse-to-fine label refinement. H2O-Net learns to synthesize signals highly correlative with water presence as a domain adaptation step for semantic segmentation in high resolution satellite imagery. Our work also proposes a self-supervision mechanism, which does not require any hand annotation, used during training to generate high quality ground truth data. We demonstrate that H2O-Net outperforms the state-of-the-art semantic segmentation methods on satellite imagery by 10% and 12% pixel accuracy and mIoU respectively for the task of flood segmentation. We emphasize the generalizability of our model by transferring model weights trained on satellite imagery to drone imagery, a highly different sensor and domain.
翻译:通过高分辨率、高悬浮卫星图像等近实时准确的洪水探测,对于通过提供快速和可采取行动的信息防止生命损失至关重要。用于洪水探测的仪器和传感器只能以低分辨率、低悬浮卫星和带区域重新访问期不超过16天的低悬浮卫星提供,使使用此类卫星的洪水警报系统不可靠。这项工作提供了H2O-Network,这是通过弥合低和高悬浮卫星与粗通到平面标签的改进之间的域差,从卫星和航空图像中分离洪水的一种自我监督的深层学习方法。H2O-Net学会将信号与水的存在高度相关,作为高分辨率卫星图像中语义分解的域适应步骤。我们的工作还提出了一个自我监督的观察机制,该机制不需要任何手记,用于培训,以生成高质量的地面真实数据。我们证明H2O-Net在卫星图像上超越了最新的静态分解方法,分别使用了10%和12%的等离子精确度和 mIOU,这是用于洪水分解任务的一个域模型。我们通过高分辨率的图像模型,我们强调高分辨率的通用性遥感模型。