Optimization problems with continuous data appear in, e.g., robust machine learning, functional data analysis, and variational inference. Here, the target function is given as an integral over a family of (continuously) indexed target functions - integrated with respect to a probability measure. Such problems can often be solved by stochastic optimization methods: performing optimization steps with respect to the indexed target function with randomly switched indices. In this work, we study a continuous-time variant of the stochastic gradient descent algorithm for optimization problems with continuous data. This so-called stochastic gradient process consists in a gradient flow minimizing an indexed target function that is coupled with a continuous-time index process determining the index. Index processes are, e.g., reflected diffusions, pure jump processes, or other L\'evy processes on compact spaces. Thus, we study multiple sampling patterns for the continuous data space and allow for data simulated or streamed at runtime of the algorithm. We analyze the approximation properties of the stochastic gradient process and study its longtime behavior and ergodicity under constant and decreasing learning rates. We end with illustrating the applicability of the stochastic gradient process in a polynomial regression problem with noisy functional data, as well as in a physics-informed neural network.
翻译:连续数据的最佳化问题出现在强机学习、功能数据分析和变异推断中。 这里, 目标函数被设定为一组( 连续) 指数化目标函数的组合( 连续) 的有机体。 这些问题通常可以通过随机转换指数的随机优化方法来解决: 对指数化目标函数采取优化步骤。 在这项工作中, 我们研究一个随机转换指数的随机随机调整指数, 用于优化数据的优化问题的随机梯度梯度梯度下行算法的连续时间变量。 这个所谓的随机梯度梯度进程由梯度流组成, 最大限度地减少指数化目标函数, 与确定指数的连续时间指数进程相结合。 例如, 指数进程可以反映扩散、 纯跳跃过程, 或者紧凑空间的其他 L\' 振动过程。 因此, 我们研究连续数据空间的多重抽样模式, 允许在算法运行时模拟或流出的数据。 我们分析随机梯度梯度进程的近似特性, 并研究其长期适应性行为和神经性, 以恒定和不断递增的机性系统化轨道, 以恒定的渐变数据为结束。