图神经网络(GNN)已被用于解决少样本学习(FSL)问题,并显示出在换能器设置下的巨大潜力。但在归纳设置下,现有的基于GNN的方法竞争力较弱。这是因为他们使用一个实例GNN作为标签传播/分类模块,该模块与一个特征嵌入网络共同进行元学习。这种设计是有问题的,因为分类器需要快速适应新的任务,而嵌入不需要。为了解决这一问题,本文提出了一种新的混合GNN (HGNN)模型,该模型由两个GNN、一个实例GNN和一个原型GNN组成。它们代替标签传播,作为嵌入特征的适应模块,使元学习的特征嵌入快速适应新任务。重要的是,它们的设计是为了处理FSL中一个基本但经常被忽视的挑战,即每个类中只有少量的样本,任何少量样本分类器都将对糟糕的采样样本敏感,这些样本要么是异常值,要么会导致类间分布重叠。我们的两个GNN分别针对这两种差采样的少样本进行设计,并在混合GNN模型中利用它们的互补性。大量实验表明,我们的HGNN在三个FSL基准测试中取得了新的先进水平。