We present neural activation coding (NAC) as a novel approach for learning deep representations from unlabeled data for downstream applications. We argue that the deep encoder should maximize its nonlinear expressivity on the data for downstream predictors to take full advantage of its representation power. To this end, NAC maximizes the mutual information between activation patterns of the encoder and the data over a noisy communication channel. We show that learning for a noise-robust activation code increases the number of distinct linear regions of ReLU encoders, hence the maximum nonlinear expressivity. More interestingly, NAC learns both continuous and discrete representations of data, which we respectively evaluate on two downstream tasks: (i) linear classification on CIFAR-10 and ImageNet-1K and (ii) nearest neighbor retrieval on CIFAR-10 and FLICKR-25K. Empirical results show that NAC attains better or comparable performance on both tasks over recent baselines including SimCLR and DistillHash. In addition, NAC pretraining provides significant benefits to the training of deep generative models. Our code is available at https://github.com/yookoon/nac.
翻译:我们提出神经活化编码(NAC),作为从下游应用的未贴标签数据中深入了解深度表达方式的一种新颖方法,我们主张深层编码器应最大限度地利用下游预测器的数据的非线性表达力,以充分利用其代表力;为此,NAC最大限度地利用编码器激活模式与噪音通信频道上的数据之间的相互信息;我们表明,为噪音-紫外线激活代码的学习增加了RELU编码器的不同线性区域的数量,从而增加了最大非线性表达度。更有趣的是,NAC了解了连续和离散的数据表达方式,我们分别评估了两个下游任务:(一) CIFAR-10和图像网络-1K的线性分类和(二) CIFAR-10和FLICKR-25K的近邻检索。Epirical结果显示,NAC在包括SimCLR和DustillHash在内的近期基线上取得了更好或可比的业绩。此外,NAC的预培训为深层基因模型的培训提供了重大的好处。我们的代码可在 https://github.com/yon。