Random features is a powerful universal function approximator that inherits the theoretical rigor of kernel methods and can scale up to modern learning tasks. This paper views uncertain system models as unknown or uncertain smooth functions in universal reproducing kernel Hilbert spaces. By directly approximating the one-step dynamics function using random features with uncertain parameters, which are equivalent to a shallow Bayesian neural network, we then view the whole dynamical system as a multi-layer neural network. Exploiting the structure of Hamiltonian dynamics, we show that finding worst-case dynamics realizations using Pontryagin's minimum principle is equivalent to performing the Frank-Wolfe algorithm on the deep net. Various numerical experiments on dynamics learning showcase the capacity of our modeling methodology.
翻译:随机功能是一种强大的通用功能近似功能,它继承了内核方法的理论严格性,可以推广到现代学习任务。 本文将不确定的系统模型视为普遍复制核心Hilbert空间的未知或不确定的光滑功能。 通过直接近似单步动态功能, 使用随机功能, 且参数不确定, 这相当于浅浅的贝叶神经网络, 我们然后将整个动态系统视为多层神经网络。 探索汉密尔顿动力学的结构, 我们显示, 利用Pontryagin的最低限度原则来找到最坏的动态, 相当于在深网上进行Frank- Wolfe算法。 关于动态学习的各种数字实验展示了我们模型方法的能力。