All existing databases of spoofed speech contain attack data that is spoofed in its entirety. In practice, it is entirely plausible that successful attacks can be mounted with utterances that are only partially spoofed. By definition, partially-spoofed utterances contain a mix of both spoofed and bona fide segments, which will likely degrade the performance of countermeasures trained with entirely spoofed utterances. This hypothesis raises the obvious question: 'Can we detect partially-spoofed audio?' This paper introduces a new database of partially-spoofed data, named PartialSpoof, to help address this question. This new database enables us to investigate and compare the performance of countermeasures on both utterance- and segmental- level labels. Experimental results using the utterance-level labels reveal that the reliability of countermeasures trained to detect fully-spoofed data is found to degrade substantially when tested with partially-spoofed data, whereas training on partially-spoofed data performs reliably in the case of both fully- and partially-spoofed utterances. Additional experiments using segmental-level labels show that spotting injected spoofed segments included in an utterance is a much more challenging task even if the latest countermeasure models are used.


翻译:现有所有伪言数据库都含有全部攻击数据。 在实践中, 成功攻击完全可以使用部分攻击数据来解决这个问题。 根据定义, 部分攻击的发音包含虚伪和善意两个部分的混合部分, 这可能降低用完全虚伪的发音所训练的反措施的性能。 这个假设提出了一个显而易见的问题 : “ 我们能否探测部分虚伪的音频数据? ” 本文引入了一个新的部分虚报数据数据库, 名为“ 部分虚报”, 以帮助解决这一问题。 这个新数据库使我们能够调查并比较在言论和分层标签上采取反措施的性能。 使用虚伪等级标签的实验结果显示, 受过充分虚报训练的反措施的可靠性在经过部分虚报数据测试时会大大降低。 有关部分虚报数据的培训在完全和部分虚报的情况下都可靠地进行, 以完整和部分虚报的方式帮助解决这一问题。 这个新数据库使我们能够调查和比较在言论和分层标签标签上采取的反措施的性能。 如果在最新分级标签上采用更具有挑战性的分级标签, 则会显示最新的分级标签是更具有挑战性的反级。

0
下载
关闭预览

相关内容

【CVPR2021】基于反事实推断的视觉问答框架
专知会员服务
26+阅读 · 2021年3月4日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Confidence Estimation via Auxiliary Models
Arxiv
0+阅读 · 2021年5月31日
Deep Learning for Deepfakes Creation and Detection
Arxiv
6+阅读 · 2019年9月25日
Arxiv
3+阅读 · 2018年6月14日
Arxiv
19+阅读 · 2018年5月17日
Arxiv
7+阅读 · 2018年3月19日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员