The hyper-parameters of a neural network are traditionally designed through a time consuming process of trial and error that requires substantial expert knowledge. Neural Architecture Search (NAS) algorithms aim to take the human out of the loop by automatically finding a good set of hyper-parameters for the problem at hand. These algorithms have mostly focused on hyper-parameters such as the architectural configurations of the hidden layers and the connectivity of the hidden neurons, but there has been relatively little work on automating the search for completely new activation functions, which are one of the most crucial hyper-parameters to choose. There are some widely used activation functions nowadays which are simple and work well, but nonetheless, there has been some interest in finding better activation functions. The work in the literature has mostly focused on designing new activation functions by hand, or choosing from a set of predefined functions while this work presents an evolutionary algorithm to automate the search for completely new activation functions. We compare these new evolved activation functions to other existing and commonly used activation functions. The results are favorable and are obtained from averaging the performance of the activation functions found over 30 runs, with experiments being conducted on 10 different datasets and architectures to ensure the statistical robustness of the study.
翻译:神经网络的超参数传统上是通过一个耗时的试验和错误过程设计的,需要大量专家知识。神经结构搜索(NAS)算法的目的是通过自动找到一套针对手头问题的良好超参数,将人带出环圈。这些算法主要侧重于超参数,例如隐藏层的建筑配置和隐藏神经元的连接,但是,在将完全新的激活功能的搜索自动化方面,工作相对较少,这些功能是需要选择的最关键的超参数之一。目前,有些广泛使用的激活功能非常简单,运作良好,但对于找到更好的激活功能还是有一些兴趣。文献中的工作主要侧重于用手设计新的激活功能,或者从一组预先定义的功能中选择,而这项工作则提供了一种进化算法,将完全新的激活功能的搜索自动化。我们将这些新演变的激活功能与其他现有和常用的激活功能加以比较。这些结果是有利的,并且是从平均执行30多运行期的激活功能中发现的激活功能中获得的,但还是有一些兴趣。文献中的工作主要侧重于用手设计新的激活功能,或者从一组预先定义的功能中选择,而这项工作则是一种进化的进化算法,而正在对10个不同的数据设置进行实验。