Edge intelligence in space-air-ground integrated networks (SAGINs) can enable worldwide network coverage beyond geographical limitations for users to access ubiquitous and low-latency intelligence services. Facing global coverage and complex environments in SAGINs, edge intelligence can provision approximate large language models (LLMs) agents for users via edge servers at ground base stations (BSs) or cloud data centers relayed by satellites. As LLMs with billions of parameters are pre-trained on vast datasets, LLM agents have few-shot learning capabilities, e.g., chain-of-thought (CoT) prompting for complex tasks, which raises a new trade-off between resource consumption and performance in SAGINs. In this paper, we propose a joint caching and inference framework for edge intelligence to provision sustainable and ubiquitous LLM agents in SAGINs. We introduce "cached model-as-a-resource" for offering LLMs with limited context windows and propose a novel optimization framework, i.e., joint model caching and inference, to utilize cached model resources for provisioning LLM agent services along with communication, computing, and storage resources. We design "age of thought" (AoT) considering the CoT prompting of LLMs, and propose a least AoT cached model replacement algorithm for optimizing the provisioning cost. We propose a deep Q-network-based modified second-bid (DQMSB) auction to incentivize network operators, which can enhance allocation efficiency by 23% while guaranteeing strategy-proofness and free from adverse selection.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年7月10日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员