Large language models(LLMS) have shown excellent text generation capabilities,capable of generating fluent responses for many downstream tasks. However,applying large language models to real-world critical tasks remains challenging due to their susceptibility to hallucinations and inability to directly use external knowledge. To address the above challenges,this paper proposes PatternGPT, a pattern-driven text generation framework for large language models. First,the framework utilizes the extraction capabilities of large language models to generate rich and diverse patterns and later draws on the idea of federated learning. Using multiple agents to achieve sharing to obtain more diverse patterns. Finally, it searches for high-quality patterns using judgment criteria and optimization algorithms and uses the searched patterns to guide the model for generation. This framework has the advantages of generating diversified patterns, protecting data privacy,combining external knowledge, and improving the quality of generation, which provides an effective method to optimize the text generation capability of large language models,and make it better applied to the field of intelligent dialogue and content generation.
翻译:暂无翻译