This paper introduces transformer-based language models to the literature measuring corporate culture from text documents. We compile a unique data set of employee reviews that were labeled by human evaluators with respect to the information the reviews reveal about the firms' corporate culture. Using this data set, we fine-tune state-of-the-art transformer-based language models to perform the same classification task. In out-of-sample predictions, our language models classify 17 to 30 percentage points more of employee reviews in line with human evaluators than traditional approaches of text classification. We make our models publicly available.
翻译:暂无翻译