Accurate determination of a small molecule candidate (ligand) binding pose in its target protein pocket is important for computer-aided drug discovery. Typical rigid-body docking methods ignore the pocket flexibility of protein, while the more accurate pose generation using molecular dynamics is hindered by slow protein dynamics. We develop a tiered tensor transform (3T) algorithm to rapidly generate diverse protein-ligand complex conformations for both pose and affinity estimation in drug screening, requiring neither machine learning training nor lengthy dynamics computation, while maintaining both coarse-grain-like coordinated protein dynamics and atomistic-level details of the complex pocket. The 3T conformation structures we generate are closer to experimental co-crystal structures than those generated by docking software, and more importantly achieve significantly higher accuracy in active ligand classification than traditional ensemble docking using hundreds of experimental protein conformations. 3T structure transformation is decoupled from the system physics, making future usage in other computational scientific domains possible.
翻译:精确确定目标蛋白质口袋中小分子候选(ligand)粘合体构成对于计算机辅助药物发现很重要。典型的僵硬体对口法忽略了蛋白的口袋灵活性,而使用分子动态的分子体更准确的成型则受到缓慢的蛋白质动态的阻碍。我们开发了分层的高压变形(3T)算法,以快速生成多种蛋白-骨和复杂的配对质,用于药物筛查的面和亲近性估计,既不需要机器学习培训,也不需要长时间的动态计算,同时保持复杂口袋的粗粒类类协调蛋白动态和原子级细节。我们生成的3T相容结构比对口软件生成的结构更接近实验性的共心结构,更重要的是,使用数百种实验性蛋白质对口法,在活跃的项和分类中比传统的共性对接的精度要高得多。 3T结构变形与系统物理学脱钩,使得今后在其他计算科学领域使用的可能性。