We propose a new approach for data-driven automated discovery of isotropic hyperelastic constitutive laws. The approach is unsupervised, i.e., it requires no stress data but only displacement and global force data, which are realistically available through mechanical testing and digital image correlation techniques; it delivers interpretable models, i.e., models that are embodied by parsimonious mathematical expressions discovered through sparse regression of a large catalogue of candidate functions; it is one-shot, i.e., discovery only needs one experiment - but can use more if available. The problem of unsupervised discovery is solved by enforcing equilibrium constraints in the bulk and at the loaded boundary of the domain. Sparsity of the solution is achieved by l_p regularization combined with thresholding, which calls for a non-linear optimization scheme. The ensuing fully automated algorithm leverages physics-based constraints for the automatic determination of the penalty parameter in the regularization term. Using numerically generated data including artificial noise, we demonstrate the ability of the approach to accurately discover five hyperelastic models of different complexity. We also show that, if a "true" feature is missing in the function library, the proposed approach is able to surrogate it in such a way that the actual response is still accurately predicted.


翻译:我们提出了一种以数据驱动自动发现异位超弹性成份法的新方法。 这种方法不受监督, 也就是说, 它不需要压力数据, 只需要迁移和全球力量数据, 这些数据通过机械测试和数字图像相关技术现实可得; 它提供可解释的模型, 即通过大量候选功能目录的稀薄回归而发现的令人厌恶的数学表达方式体现的模型; 它是一粒子, 即发现只需要一个实验 - 但是如果有的话可以使用更多。 无监督的发现问题通过在大宗和已加载域边界执行均衡限制来解决。 解决方案的分化是通过 l_ p 正规化和阈值相结合实现的, 这需要非线性优化计划。 随之产生的完全自动算法将物理限制用于自动确定常规化术语中的处罚参数。 使用数字生成的数据, 包括人工噪音, 我们展示了精确发现五种不同复杂度的超弹性模型的方法的能力。 我们还表明, 如果一个“ 解释” 特性在功能库中仍然缺少一个能够预测的功能,, 我们还显示如果一个“ 精确的” 特性在这样的功能库中仍然无法预见到它的实际反应方法。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
The Boundary Element Method of Peridynamics
Arxiv
0+阅读 · 2021年5月31日
Arxiv
0+阅读 · 2021年5月28日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
22+阅读 · 2018年2月14日
Arxiv
11+阅读 · 2018年1月15日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员