Identification of parameters in ordinary differential equations (ODEs) is an important and challenging task when modeling dynamic systems in biomedical research and other scientific areas, especially with the presence of time-varying parameters. This article proposes a fast and accurate method, TVMAGI (Time-Varying MAnifold-constrained Gaussian process Inference), to estimate both time-constant and time-varying parameters in the ODE using noisy and sparse observation data. TVMAGI imposes a Gaussian process model over the time series of system components as well as time-varying parameters, and restricts the derivative process to satisfy ODE conditions. Consequently, TVMAGI completely bypasses numerical integration and achieves substantial savings in computation time. By incorporating the ODE structures through manifold constraints, TVMAGI enjoys a principled statistical construction under the Bayesian paradigm, which further enables it to handle systems with missing data or unobserved components. The Gaussian process prior also alleviates the identifiability issue often associated with the time-varying parameters in ODE. Unlike existing approaches, TVMAGI assumes no specific linearity of the ODE structure, and can be applied to general nonlinear systems. We demonstrate the robustness and efficiency of our method through three simulation examples, including an infectious disease compartmental model.
翻译:在生物医学研究和其他科学领域的动态系统建模时,特别是在有时间差异参数的情况下,确定普通差异方程式中的参数是一项重要而具有挑战性的任务;因此,TVMAGI完全绕过数字集成,在计算时间上节省大量时间。通过多种限制,TVMAGI在Bayesian范式下采用有原则的统计结构结构,进一步使其能够处理缺少数据或未观测到的部件的系统。TVMAGI之前的Gausian进程还针对系统组成部分的时间序列和时间变化参数规定了一个高斯进程模型,并限制衍生过程,以满足ODE条件。因此,TVMAGI完全绕过数字集成,在计算时间上实现大量节约。通过多重限制将ODE结构纳入,TVMAGI享有一种有原则的统计结构结构,从而使其能够处理缺少数据或未观测到的部件的系统。GOEOWMAGI不同于现行方法,TVMAGI认为没有具体的内线性,包括我们模拟系统的一般效率。