To meet the Ultra Reliable Low Latency Communication (URLLC) needs of modern applications, there have been significant advances in the development of short error correction codes and corresponding soft detection decoders. A substantial hindrance to delivering low-latency is, however, the reliance on interleaving to break up omnipresent channel correlations to ensure that decoder input matches decoder assumptions. Consequently, even when using short codes, the need to wait to interleave data at the sender and de-interleave at the receiver results in significant latency that acts contrary to the goals of URLLC. Moreover, interleaving reduces channel capacity, so that potential decoding performance is degraded. Here we introduce a variant of Ordered Reliability Bits Guessing Random Additive Noise Decoding (ORBGRAND), which we call ORBGRAND-Approximate Independence (ORBGRAND-AI), a soft-detection decoder that can decode any moderate redundancy code and overcomes the limitation of existing decoding paradigms by leveraging channel correlations and circumventing the need for interleaving. By leveraging correlation, not only is latency reduced, but error correction performance can be enhanced by multiple dB, while decoding complexity is also reduced, offering one potential solution for the provision of URLLC.


翻译:为满足现代应用中的超可靠低延迟通信(URLLC)需求,在开发短误校正代码和相应的软检测解密器方面取得了显著进展。但是,实现低纬度的一个重大障碍是依赖互换性来打破无处不在的频道关联,以确保解码器输入与解码器假设相匹配。因此,即使使用短代码,也需要等待发送器数据间断和接收器断开数据,从而导致出现与URLLC目标相违背的重大延迟。此外,互换会降低频道能力,从而降低潜在的解码性能。在这方面,我们引入了一种变异的有条不紊的可靠性比特(OrBGRAND),我们称之为ORBGRAND-Appear 独立性(ORBGRAND-AI),一个软解码解码解码器,可以解码任何中度的冗余代码,并克服现有解码模式的局限性,通过利用频道连接和规避内部解码性需要,从而降低分解码性性能。在这里我们引入了一种变法,但通过利用多变法的变法的变法,这又提供了一种变法的变法的变法的可能性,但只是提供了一种变法的变法的变法的变法的变法的变法的变制。</s>

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员