Fractionally integrated autoregressive moving average processes have been widely and successfully used to model univariate time series exhibiting long range dependence. Vector and functional extensions of these processes have also been considered more recently. Here we rely on a spectral domain approach to extend this class of models in the form of a general Hilbert valued processes. In this framework, the usual univariate long memory parameter d is replaced by a long memory operator D acting on the Hilbert space. Our approach is compared to processes defined in the time domain that were previously introduced for modeling long range dependence in the context of functional time series.


翻译:已经广泛和成功地将零星集成的自动递减移动平均过程成功地用于模拟显示长距离依赖性的单向时间序列。这些过程的矢量和功能扩展最近也得到了更多的考虑。在这里,我们依靠光谱域法来扩展这种类型的模型,以一般的Hilbert有价值过程的形式。在这个框架内,通常的单向长记忆参数d 被在Hilbert 空间操作的长的内存操作员D 所取代。我们的方法与以前为在功能时间序列中模拟长距离依赖性而采用的时间域定义的过程进行了比较。

0
下载
关闭预览

相关内容

最新《Transformers模型》教程,64页ppt
专知会员服务
312+阅读 · 2020年11月26日
专知会员服务
45+阅读 · 2020年10月31日
NLPCC 2020《预训练语言模型回顾》讲义下载,156页PPT
专知会员服务
48+阅读 · 2020年10月17日
【KDD2020】TAdaNet: 用于图增强元学习的任务自适应网络
专知会员服务
18+阅读 · 2020年9月21日
自回归模型:PixelCNN
专知会员服务
27+阅读 · 2020年3月21日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:基于参数共享的CNN-RNN混合模型
LibRec智能推荐
6+阅读 · 2019年3月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Arxiv
0+阅读 · 2020年12月1日
VIP会员
相关VIP内容
最新《Transformers模型》教程,64页ppt
专知会员服务
312+阅读 · 2020年11月26日
专知会员服务
45+阅读 · 2020年10月31日
NLPCC 2020《预训练语言模型回顾》讲义下载,156页PPT
专知会员服务
48+阅读 · 2020年10月17日
【KDD2020】TAdaNet: 用于图增强元学习的任务自适应网络
专知会员服务
18+阅读 · 2020年9月21日
自回归模型:PixelCNN
专知会员服务
27+阅读 · 2020年3月21日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:基于参数共享的CNN-RNN混合模型
LibRec智能推荐
6+阅读 · 2019年3月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Top
微信扫码咨询专知VIP会员