Computing capacity of Gaussian Interference Channel (GIC) is complex since knowledge of input distributions is needed to find the mutual information terms in closed forms, which should be optimized over input distributions and associated resource allocation. The optimum solution may require dividing the available resources among several GIC (each called a "constituent region", hereafter) and apply time-sharing among them. The current article focuses on a single constituent region (meaning the constraints on resources are all satisfied with equality) for a 2-users weak GIC. It is shown that, by relying on a different, intuitively straightforward, interpretation of the underlying optimization problem, one can determine the encoding/decoding strategies in the process of computing the optimum solution. This is based on gradually moving along the boundary of the capacity region in infinitesimal steps, where the solution for the end point in each step is constructed and optimized relying on the solution at the step's starting point. This approach enables proving Gaussian distribution is optimum over the entire boundary, and also allows finding simple closed form solutions describing different parts of the capacity region. The solution for each constituent 2-users GIC coincides with the optimum solution to the Han Kobayashi (HK) system of constraints with i.i.d. (scalar) Gaussian inputs. Although the article is focused on 2-users weak GIC, the proof for optimality of Gaussian distribution is independent of the values of cross gains, and thereby is universally applicable to strong, mixed and Z interference channels, as well as to GIC with more than two users. In addition, the procedure for the construction of boundary is applicable for arbitrary cross gain values, by re-deriving various conditions that have been established assuming cross gains being less than one.


翻译:Gausian Interference Channel (GIC) 的计算能力是复杂的,因为对投入分配的了解是需要以封闭的形式找到相互的信息术语,这种信息术语应优化于投入分配和相关资源分配。 最佳解决方案可能需要将现有资源分成几个GIC(每个都称为“组成区域”, 以后), 并在它们之间实行时间共享。 目前的文章侧重于一个单一的组成区域( 意味着对资源的限制都以平等的方式得到满足 ), 用于一个2个用户的薄弱 GIC。 交叉显示,通过依赖对基本优化问题的不同、直观、直观的解释,人们可以确定计算最佳解决方案过程中的混合编码/解码战略。 最佳解决方案的基础可能是在能力区域的边界上逐步沿能力区域的边界移动( 每个“组成区域”,每个“组成区域”,每个“组成区域”,每个“组成区域”,每个“组成区域”,每个“组成区域”,每个“组成区域”,每个步骤”的解决方案的构建和最佳利用“GIIC”系统的最佳结构。 最优化的解决方案是GIA的升级的流程。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
44+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年1月14日
Design and Analysis of Switchback Experiments
Arxiv
0+阅读 · 2021年1月14日
Arxiv
0+阅读 · 2021年1月14日
Arxiv
0+阅读 · 2021年1月13日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
3+阅读 · 2018年1月10日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员