In the framework of accurate and efficient segregated schemes for 3D cardiac electromechanics and 0D cardiovascular models, we propose here a novel numerical approach to address the coupled 3D-0D problem introduced in Part I of this two-part series of papers. We combine implicit-explicit schemes to solve the different cardiac models in a multiphysics setting. We properly separate and manage the different time and space scales related to cardiac electromechanics and blood circulation. We employ a flexible and scalable intergrid transfer operator that enables to interpolate Finite Element functions among different meshes and, possibly, among different Finite Element spaces. We propose a numerical method to couple the 3D electromechanical model and the 0D circulation model in a numerically stable manner within a fully segregated fashion. No adaptations are required through the different phases of the heartbeat. We also propose a robust algorithm to reconstruct the stress-free reference configuration. Due to the computational cost associated with the numerical solution of this inverse problem, the reference configuration recovery algorithm comes along with a novel projection technique to precisely recover the unloaded geometry from a coarser representation of the computational domain. We show the convergence property of our numerical schemes by performing an accuracy study through grid refinement. To prove the biophysical accuracy of our computational model, we also address different scenarios of clinical interest in our numerical simulations by varying preload, afterload and contractility. Indeed, we simulate physiologically relevant behaviors and we reproduce meaningful results in the context of cardiac function.


翻译:在3D心电机和0D心血管模型的准确和高效隔离计划框架内,我们在此提出一个新的数字方法,以解决这一系列两部分论文第一部分中引入的3D-0D问题。我们将隐含的明化计划结合在一起,在一个多物理环境中解决不同的心脏模型。我们适当地区分和管理与心电机和血液循环相关的不同时间和空间尺度。我们使用一个灵活和可扩缩的网络间传输操作器,以便能够在不同的网格间和可能的不同芬利元素空间间对精度元素功能进行调试。我们提出一个数字方法,将3D电机模型和0D循环模型以完全分离的方式对齐。我们不需要通过心跳的不同阶段进行调整。我们还提出一个强大的算法,以重建与心电流电流电机和血液循环相关的参考数据配置转换配置算法。我们用一种新颖的投影技术,以便精确地从一个直径直径直的直径直的直径直径计算模型中恢复几何测量。我们用直径直径的计算方法,我们用直径的直径直径直径直径计算法计算了我们的直径直径直径直径计算方法,我们用直径直的直径直径直的计算方法,我们用直径直径直的计算了。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
50+阅读 · 2020年12月14日
【DeepMind】强化学习教程,83页ppt
专知会员服务
153+阅读 · 2020年8月7日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
Arxiv
0+阅读 · 2021年1月18日
VIP会员
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
Top
微信扫码咨询专知VIP会员