This paper introduces a new framework for quantifying predictive uncertainty for both data and models that relies on projecting the data into a Gaussian reproducing kernel Hilbert space (RKHS) and transforming the data probability density function (PDF) in a way that quantifies the flow of its gradient as a topological potential field quantified at all points in the sample space. This enables the decomposition of the PDF gradient flow by formulating it as a moment decomposition problem using operators from quantum physics, specifically the Schrodinger's formulation. We experimentally show that the higher order modes systematically cluster the different tail regions of the PDF, thereby providing unprecedented discriminative resolution of data regions having high epistemic uncertainty. In essence, this approach decomposes local realizations of the data PDF in terms of uncertainty moments. We apply this framework as a surrogate tool for predictive uncertainty quantification of point-prediction neural network models, overcoming various limitations of conventional Bayesian based uncertainty quantification methods. Experimental comparisons with some established methods illustrate performance advantages exhibited by our framework.
翻译:本文提出了一个新的框架,用以量化数据和模型的预测不确定性,这种预测依据的是将数据预测成高斯人生成核心Hilbert空间(RKHS),并转换数据概率值功能(PDF),以量化其梯度流,将其作为在抽样空间所有点量化的表层潜在潜在领域。通过将PDF梯度流编成一个瞬间分解问题,利用量子物理操作器,特别是Schrodinger的配方,使PDF梯度流分解成一个瞬间分解问题。我们实验性地表明,较高顺序模式系统地将PDF的不同尾部区域集中在一起,从而对具有高度共性不确定性的数据区域提供前所未有的歧视性解析。实质上,这种方法在不确定性时刻将数据PDFF的局部认识分解为本地数据值。我们将这个框架用作一种代名工具,用于预测点定位神经网络模型的不确定性量化,克服常规的Bayesian不确定性定量方法的各种局限性。实验性比较用一些既定方法说明我们框架所展示的绩效优势。