We study the estimation and prediction of functional autoregressive~(FAR) processes, a statistical tool for modeling functional time series data. Due to the infinite-dimensional nature of FAR processes, the existing literature addresses its inference via dimension reduction and theoretical results therein require the (unrealistic) assumption of fully observed functional time series. We propose an alternative inference framework based on Reproducing Kernel Hilbert Spaces~(RKHS). Specifically, a nuclear norm regularization method is proposed for estimating the transition operators of the FAR process directly from discrete samples of the functional time series. We derive a representer theorem for the FAR process, which enables infinite-dimensional inference without dimension reduction. Sharp theoretical guarantees are established under the (more realistic) assumption that we only have finite discrete samples of the FAR process. Extensive numerical experiments and a real data application of energy consumption prediction are further conducted to illustrate the promising performance of the proposed approach compared to the state-of-the-art methods in the literature.
翻译:我们研究了功能自动递减~(FAR)过程的估算和预测,功能自动递减~(FAR)过程是一个用于模拟功能时间序列数据的统计工具,由于FAR过程的无穷维性质,现有文献通过维度递减处理其推论,其理论结果要求(不现实的)假设完全观察到的功能时间序列;我们提议了一个基于Recing Kernel Hilbert Spaces~(RKHS)的替代推论框架;具体地说,提出了一种核规范规范正规化方法,直接从功能时间序列的离散样本中估算FAR过程的过渡操作者;我们为FAR过程提出一个代表理论,这样就可以在不降低维度的情况下进行无限推论;根据(更现实的)假设,即我们仅拥有完全观察到的FAR过程的有限离子样本,建立了精细的理论保障;进一步进行了广泛的数字试验,并实际数据应用能源消耗预测,以说明拟议方法与文献中的最新方法相比,前景良好。