We define a novel class of additive models, called Extended Latent Gaussian Models, that allow for a wide range of response distributions and flexible relationships between the additive predictor and mean response. The new class covers a broad range of interesting models including multi-resolution spatial processes, partial likelihood-based survival models, and multivariate measurement error models. Because computation of the exact posterior distribution is infeasible, we develop a fast, scalable approximate Bayesian inference methodology for this class based on nested Gaussian, Laplace, and adaptive quadrature approximations. We prove that the error in these approximate posteriors is op(1) under standard conditions, and provide numerical evidence suggesting that our method runs faster and scales to larger datasets than methods based on Integrated Nested Laplace Approximations and Markov Chain Monte Carlo, with comparable accuracy. We apply the new method to the mapping of malaria incidence rates in continuous space using aggregated data, mapping leukaemia survival hazards using a Cox Proportional-Hazards model with a continuously-varying spatial process, and estimating the mass of the Milky Way Galaxy using noisy multivariate measurements of the positions and velocities of star clusters in its orbit.
翻译:我们定义了一个新型的添加模型类别,称为“扩展Later Lient Gausian模型”,允许在添加预测器和平均响应器之间建立广泛的响应分布和灵活关系。新类别涵盖广泛的有趣模型,包括多分辨率空间过程、部分概率生存模型和多变量测量错误模型。由于计算精确的后方分布是不可行的,我们根据嵌巢高山、拉普特和适应性二次近似值,为这一类制定了一种快速、可伸缩的近似巴耶斯推论方法。我们证明这些近似近似后方预测器中的错误在标准条件下是op(1),并提供了数字证据,表明我们的方法比基于内斯特·拉普应用和马可夫链蒙特卡洛集成法的方法以及类似的准确性方法,在更大范围内对疟疾发生率进行计算,我们采用新方法在连续空间使用汇总数据,用Cox比例-哈扎尔德模型对白血病生存危害进行测绘,用持续移动的空间过程来测量,并估计银河中恒星系轨道位置的质量。