We define a novel class of additive models, called Extended Latent Gaussian Models, that allow for a wide range of response distributions and flexible relationships between the additive predictor and mean response. The new class covers a broad range of interesting models including multi-resolution spatial processes, partial likelihood-based survival models, and multivariate measurement error models. Because computation of the exact posterior distribution is infeasible, we develop a fast, scalable approximate Bayesian inference methodology for this class based on nested Gaussian, Laplace, and adaptive quadrature approximations. We prove that the error in these approximate posteriors is op(1) under standard conditions, and provide numerical evidence suggesting that our method runs faster and scales to larger datasets than methods based on Integrated Nested Laplace Approximations and Markov Chain Monte Carlo, with comparable accuracy. We apply the new method to the mapping of malaria incidence rates in continuous space using aggregated data, mapping leukaemia survival hazards using a Cox Proportional-Hazards model with a continuously-varying spatial process, and estimating the mass of the Milky Way Galaxy using noisy multivariate measurements of the positions and velocities of star clusters in its orbit.


翻译:我们定义了一个新型的添加模型类别,称为“扩展Later Lient Gausian模型”,允许在添加预测器和平均响应器之间建立广泛的响应分布和灵活关系。新类别涵盖广泛的有趣模型,包括多分辨率空间过程、部分概率生存模型和多变量测量错误模型。由于计算精确的后方分布是不可行的,我们根据嵌巢高山、拉普特和适应性二次近似值,为这一类制定了一种快速、可伸缩的近似巴耶斯推论方法。我们证明这些近似近似后方预测器中的错误在标准条件下是op(1),并提供了数字证据,表明我们的方法比基于内斯特·拉普应用和马可夫链蒙特卡洛集成法的方法以及类似的准确性方法,在更大范围内对疟疾发生率进行计算,我们采用新方法在连续空间使用汇总数据,用Cox比例-哈扎尔德模型对白血病生存危害进行测绘,用持续移动的空间过程来测量,并估计银河中恒星系轨道位置的质量。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
42+阅读 · 2020年12月18日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
159+阅读 · 2020年1月16日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年9月2日
Arxiv
11+阅读 · 2022年9月1日
Arxiv
0+阅读 · 2022年9月1日
Arxiv
14+阅读 · 2022年5月6日
Generalized Out-of-Distribution Detection: A Survey
Arxiv
15+阅读 · 2021年10月21日
Arxiv
18+阅读 · 2021年3月16日
VIP会员
相关VIP内容
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员