We present a novel group collaborative learning framework (GCoNet) capable of detecting co-salient objects in real time (16ms), by simultaneously mining consensus representations at group level based on the two necessary criteria: 1) intra-group compactness to better formulate the consistency among co-salient objects by capturing their inherent shared attributes using our novel group affinity module; 2) inter-group separability to effectively suppress the influence of noisy objects on the output by introducing our new group collaborating module conditioning the inconsistent consensus. To learn a better embedding space without extra computational overhead, we explicitly employ auxiliary classification supervision. Extensive experiments on three challenging benchmarks, i.e., CoCA, CoSOD3k, and Cosal2015, demonstrate that our simple GCoNet outperforms 10 cutting-edge models and achieves the new state-of-the-art. We demonstrate this paper's new technical contributions on a number of important downstream computer vision applications including content aware co-segmentation, co-localization based automatic thumbnails, etc.
翻译:我们提出了一个新型小组协作学习框架(GCoNet),能够实时探测共振物体(16米),根据以下两个必要标准,同时在小组一级进行协商一致陈述:1) 集团内部契约,通过利用我们的新组合亲和模块获取共振物体固有的共享属性,更好地形成共振物体之间的一致性;2) 集团间分离,以有效抑制噪音物体对产出的影响,方法是引入新的小组协作模块,调节不一致的共识;要学习如何更好地嵌入空间而不增加计算间接费用,我们明确采用辅助分类监督;对三项具有挑战性的基准,即COCA、COSOD3k和Cosal2015进行广泛的实验,表明我们的简单的GCoNet超越了10个尖端模型,并实现了新的艺术状态。我们展示了本文件对一系列重要的下游计算机愿景应用的新的技术贡献,包括了解内容的组合,基于自动缩略图等。